
Reprint courtesy of Ars Hermeneutica, Ltd. http://ArsHermeneutica.org

Paper appeared in Proceedings Ocean Community Conference ‘98 (The Marine Technology

Society Annual Conference), Baltimore, MD, November 1998, pp. 185-189.

A Linux-Based Automated Data Collection System for Moorings

Carl C. Gaither III, J.N. Shaumeyer, Peter H. Young, John M. Borden
Jackson and Tull, Seabrook, MD

1. Introduction

A major problem in obtaining
oceanographic and atmospheric data from
remote sites is the automated collection and
transfer of that data in near real-time to the
experimenter. We are collaborating with the
Woods Hole Oceanographic Institute (WHOI) to
develop an innovative data collection and
communication system for moorings that
addresses this problem.

The system is built around a PC/104

computer with a 100 MHz 486 Intel
microprocessor and uses the Linux operating
system. Linux, a freely distributable clone of
the Unix operating system, provides our data
system with all the multi-user, multitasking,
process protection and network support
capabilities found in today’s powerful desktop
workstations.

Using a standardized, multi-tasking

operating system has several distinct advantages.
Data acquisition software and instrument
interfaces can be independently developed and
executed for each sensor or instrument. The
development of such software can be done using
well known programming languages such as C,
C++, Perl and shell scripts. The process
protection and multi-tasking capabilities of
Linux ensure that the software for various
instruments on moorings, regardless of the
language in which they were written, cannot
interfere with each other. Task scheduling, such
as polling sensors and periodically turning
instruments on and off, can be easily
implemented using the cron facility built into
Linux, or by using custom software. We can
also configure the system, via software, to
service sensors for multiple experiments on a
single mooring and direct the data from each
experiment to the appropriate investigator using

standard networking tools. Our data system is
currently outfitted with A-to-D converters and
multiple RS-232 ports as sensor interfaces.

In addition to data collection, our Linux-

based computer also performs tasks necessary
for transmitting data to the experimenter via low
earth orbiting satellite. These tasks include
tracking the communication satellites of interest,
computing Doppler corrections to the transmit
and receive radio frequencies, command and
control of the radio hardware and position and
time monitoring via GPS. These tasks are
completely invisible to the data acquisition
software developer since both satellite tracking
and data acquisition are totally independent
processes under Linux.

2. System Overview

Our data system is currently configured
to collect both atmospheric and oceanographic
data. Specific atmospheric data products include
wind speed and direction, atmospheric
temperature and pressure, measurements of
photosynthetically active radiation and compass
orientation of the buoy. Oceanographic data
products include current, temperature and
salinity, pressure and a variety of bio-optical
measurements. The atmospheric measurements
are made every ten seconds and archived. Thirty
minute averages are computed and returned in
near real-time via satellite. Oceanographic
parameters are measured about every five
minutes, with the exception of current, which is
sampled every fifteen minutes.

Data is transmitted to the experimenter

in near real-time via PoSAT, a low earth orbiting
store-and-forward communications satellite. We
have developed a custom computer-controlled
radio transceiver to send our data to PoSAT.
The satellite communication protocols used are

Reprint courtesy of Ars Hermeneutica, Ltd. http://ArsHermeneutica.org

A Linux-Based Automated Data Collection System for Moorings page 2 of 5

those developed by the amateur satellite radio
community. These protocols are built into the
Linux kernel. The details of the satellite
communications and networking process will
not be discussed here with the exception of the
satellite tracking and radio control programs
whose development was greatly enhanced by
using the Linux operating system. For details on
the communications system, see the paper by
Shaumeyer, et al elsewhere in these proceedings.

3. Hardware

The computer system is built around the

SAT-DX, a small, high-performance
embeddable computer system manufactured by
WinSystems, Inc. It contains an 80486DX4-100
microprocessor with 8 Mbytes of RAM. This
computer includes interfaces for floppy disks,
IDE fixed disks, one parallel port, keyboard
controller and two serial channels that can be
separately configured for either RS-232, RS-
422, or RS-485 compatibility. The device can
be operated from a single 5 volt power supply.
The system BIOS has been modified to allow
operation without a keyboard or video display.
A full 16-bit PC/104 expansion bus is provided
for attaching a variety of peripherals.

Networking capabilities are provided via

the PCM-NE2000 manufactured by
WinSystems. It is a PC/104 NE2000 compatible
board that is completely software compatible
with the Novell NE2000 ISA bus Ethernet card.
This device supports direct connections to
10BASE5 networks via its built-in AUI
connector. By using third party transceivers
connected to the AUI port, the computer system
can be connected to 10BASE2 or 10BASE-F
networks. Support for twisted pair 10BASE-T is
provided directly through the built-in RJ45
connector.

Analog data collection is performed

using the PCM-A/D-12 analog-to-digital
converter PC/104 board, also manufactured by
WinSystems. This board is built around the
Burr-Brown ADS7806 12-bit successive
approximation analog-to-digital converter chip.
The PCM-A/D supports 16 channels of single-

ended input or 8 channels of differential input.
Input signals can be in either a 5V unipolar
range or a bipoloar +/-10V range. The
conversion time is 25 microseconds and random
channel access time is 30 microseconds. The
end of conversion can be determined via
software polling or by a CPU interrupt.

In order to collect multiple channels of

serial data, the data acquisition system has a
BayTech H-Series multiport controller that
provides RS-232 communications with multiple
peripherals from a single host computer serial
port. The multiport controller can be
programmed for each peripheral's specific baud
rate, parity, data and stop bits. The device is run
in a mode that provides automatic multiplexing
of data from up to four RS-232 serial devices by
continuously scanning all ports to check for
characters in the receive buffers. If a receive
buffer contains data, it is transmitted to the host
computer in data blocks preceded by a port
identification code. Transmission continues
until the buffer is empty or a user-specified data
block length has been transmitted.

Computer control of sensor and radio

power is achieved using a model PC104-PDIS08
eight channel isolated input, eight channel relay
output PC/104 interface board. Currently, the
eight input channels are unused. The outputs are
eight electro-mechanical relays. Five of these
relays provide FORM C connections and three
provide normally open FORM A connections.
The contacts are rated for 2.0 amps at 28 volts
DC resistive load. The relays are controlled by
writing to one eight-bit port in I/O memory. The
state of the relay may be read back from the
same port.

Satellite tracking is made possible by

incorporating a Zeli Systems SATPAK-
104PLUS-L PC/104 carrier board mated with a
Trimble SK-8 GPS receiver system in the
computer. The signals from the GPS receiver
are converted to a single ended RS-232 signal
and read through one of the serial ports on the
SAT-DX.

Reprint courtesy of Ars Hermeneutica, Ltd. http://ArsHermeneutica.org

A Linux

Frequency control of the radio receiver
is performed through the LPT1 port on the SAT-
DX single-board computer using custom
software. A schematic of the receiver is shown
in Figure 1. The Direct Digital Synthesizer
(DDS) in Figure 1 allows the software to
communicate through LPT1 to adjust the
frequency of the receiver. The DDS is an
Analog Devices AD9850/FSPCB evaluation
board. The AD9850, when referenced to an
accurate clock source, generates a spectrally
pure, frequency/phase-programmable, analog
output sine wave. The AD9850 has a 32-bit
frequency tuning word, which results in an
output tuning resolution of 0.0291 Hz when used
with a 125 MHz clock input. Our radio control
software adjusts the radio frequency only to the
nearest 1 Hz. The architecture of the AD9850
allows for the generation of output frequencies
up to one-half of the 125 MHz reference clock
frequency. The frequency tuning, control, and
phase modulation words are loaded into the
AD9850 via a parallel byte or serial loading
format.

Data is transferred to the radio

transmitter using a commercially available
Kantronics KPC-9612 Plus multi-port packet
communicator. It interfaces to the computer

through a serial port.

4. Software

A variety of tools are available for the
software developer using the Linux operating
system. In our system, C programs are primarily
used to interface with the data collection and
power relay hardware. C programs, Perl scripts
and shell programs are used to collect the RS-
232 serial data. Specifically, the data acquisition
and command/control software must perform the
following tasks:

1. Analog data collection: We currently have

12 channels of analog data that must be
digitized and stored which include
atmospheric temperature and pressure, wind
speed and direction, and the orientation of
the buoy derived from compass
measurements. In addition, various
housekeeping parameters are also measured,
such as battery voltage and radio receiver
signal strength. The analog data is sampled
every 10 seconds and stored on hard disk.
The analog data collection routines are
written in C. Averages are computed every
thirty minutes and are transmitted back via
satellite. The Linux cron facility

Direct Digital
Synthesizer

IF
LO

RF

Narrowband filter

FM demodulator

Terminal
Node
Controller

Computer

MHz
r

Bandpass
filter

409 MHz

Telemetry

Transmitter

RF
LO

IF

429.950 MHz

10.7
Filte

Figure 1: Schematic of radio receiver.

-Based Automated Data Collection System for Moorings page 3 of 5

Reprint courtesy of Ars Hermeneutica, Ltd. http://ArsHermeneutica.org

A Linux-Based Automated Data Collection System for Moorings page 4 of 5

automatically executes this averaging
software every thirty minutes. Our system
has the capability, once the averaged data
has been analyzed on shore, to execute
commands sent to the buoy via satellite that
can extract data from selected times of
interest.

2. Digital data collection: We currently have
five channels of RS-232 data which include
water conductivity, underwater radiometers,
an acoustic Doppler current profiler
(ADCP), a suite of bio-optical sensors, and
water pressure. Sampling intervals range
from 225 seconds for the bio-optical sensors
up to fifteen minutes or more for the ADCP
measurements. The sampling intervals have
been chosen so as to provide slightly more
than the anticipated satellite data transfer
rates expected at-sea. Perl scripts are
primarily used to collect the serial data and
time-tag each data record from each sensor.

3. Data-formatting and archiving: The data is
formatted for transmission to PoSAT and the
raw data is simultaneously archived for later
use. Much of the data formatting is
accomplished with software already
developed by the amateur satellite radio
community and freely available under
Linux.

4. Satellite tracking: PoSAT is visible to the
buoy for six to eight intervals of
approximately fifteen minutes every day.
Our computer system continuously
computes the location of PoSAT, and any
other satellites of interest. When PoSAT is
visible, the radio is turned on and data is
sent to the spacecraft. Simultaneously, any
command files previously loaded on PoSAT
by our ground station are downloaded and
executed.

5. Position/time updating: In order to
accurately track PoSAT, the precise position
of the buoy and time of day are required.
Also, the data collected must be time-tagged
for post-processing. The position of the
buoy is updated hourly so that, if the buoy
breaks free of its mooring, sufficient data are
available to track it for recovery. Time
updates are made every time the computer is
rebooted and then once daily. The Linux

cron facility handles the scheduling of the
position and time updating software.

6. Radio frequency tuning: The custom
software for setting the receive frequency of
our computer-controlled transceiver is
written in C.

7. Networking/communications: Software
development is greatly enhanced with the
built-in networking capabilities of Linux.
These capabilities include telnet, ftp and e-
mail.

8. Power management: Part of the analog data
are measurements of the state of charge of
the batteries. If the battery voltage gets too
low, Linux shell scripts shut down all non-
essential systems, which include the radio
and sensor power, until the batteries have
recharged.

9. Periodic housekeeping: As part of Linux’s
standard procedures, a wide variety of
computer and software status information is
stored. For example, information regarding
the status of cron jobs can be automatically
logged and emailed to any user on the buoy
computer (including pseudo-users that can
automatically upload the information). Such
information is very helpful in software
debugging.

Figure 2 shows how these various processes

interconnect. Each of the ovals represents an
independent process or task. Note that, aside
from having the Linux OS in common, there is
no complex, central controlling process. Each
individual process was developed and debugged
separately. At boot time, the Linux OS starts
each process and insures that they do not
interfere with each other. Should one of the
connections between processes be severed the
individual processes themselves will continue to
run.

For example, consider the connection

between GPS and satellite tracking. The satellite
tracking program will continue to run without
GPS updates and will continue to provide inputs
to the software connected to it. Once the GPS
process has been re-initialized, the satellite
tracking software will seamlessly reintegrate
new GPS data. As a second example, consider

Reprint courtesy of Ars Hermeneutica, Ltd. http://ArsHermeneutica.org

A Linux-Based Automated Data Collection System for Moorings page 5 of 5

the analog and digital data collection software.
The development of these tasks did not have to
incorporate power management. All they have
to do is look for any data that is ready to be
collected and write it to disk. Power
management is a separate task that simply looks
at the battery status and, if the batteries are
running low, shuts off the data collection
hardware as well as the radio transmitter and
receiver. The data collection software does not
need to know the power to the sensors has been
turned off. It just needs to know that since there
is no data to be collected, it should do nothing.
Separating complex tasks into several
concurrently running simpler tasks is a major
benefit of software development in a multi-
tasking environment.

5. Conclusions

We have developed a prototype data
collection and communication system suitable
for moorings that uses the Linux operating
system. During in-water tests off the WHOI
dock, this system demonstrated its ability to

autonomously collect multiple channels of
analog and digital data. It has also demonstrated
the ability to transmit that data back to a ground
station via low earth orbiting satellite.

By incorporating powerful computing tools

in our buoy, we have the capability to perform
sophisticated data preprocessing, validation and
verification at sea that was formerly possible
only on shore. These computing tools, which
used to be available only to desktop workstation
users, are now easily available for use in
embedded computer applications.

Acknowledgements

We would like to acknowledge the

assistance provided by Ed Whittington in
preparing the buoy electronics for final
integration and testing at WHOI.

This work was supported in part by NASA

SBIR Contract NAS5-97057.

Linux OS

Digital
Data

Collection

Analog
Data

Collection

Data
Formatting

Networking/
Communications

Power
Management

Radio
Hardware

Satellite
Tracking

Satellite
Selection

Doppler
Correction

Radio
Frequency
Selection

GPS

Housekeeping

Figure 2: Software processes and connections.

